The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions

نویسنده

  • Bernd Ammann
چکیده

Let us fix a conformal class [g0] and a spin structure σ on a compact manifold M . For any g ∈ [g0], let λ1 (g) be the smallest positive eigenvalue of the Dirac operator D on (M,g, σ). In a previous article we have shown that λmin(M,g0, σ) := inf g∈[g0] λ1 (g)vol(M,g) 1/n > 0. In the present article, we enlarge the conformal class by adding certain singular metrics. We will show that if λmin(M,g0, σ) < λ + min(S n), then the infimum is attained on the enlarged conformal class. For proving this, we solve a system of semi-linear partial differential equations involving a nonlinearity with critical exponent: Dφ = λ|φ|2/(n−1)φ. The solution of this problem has many analogies to the solution of the Yamabe problem. However, our reasoning is more involved than in the Yamabe problem as the eigenvalues of the Dirac operator tend to +∞ and −∞. Using the spinorial Weierstraß representation, the solution of this equation in dimension 2 shows the existence of many periodic constant mean curvature surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The first conformal Dirac eigenvalue on 2-dimensional tori

Let M be a compact manifold with a spin structure χ and a Riemannian metric g. Let λ2g be the smallest eigenvalue of the square of the Dirac operator with respect to g and χ. The τ -invariant is defined as τ(M,χ) := sup inf q λ2gVol(M, g) 1/n where the supremum runs over the set of all conformal classes on M , and where the infimum runs over all metrics in the given class. We show that τ(T , χ)...

متن کامل

Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds

Let M be a compact manifold equipped with a Riemannian metric g and a spin structure σ. We let λ+min(M, [g], σ) = inf g̃∈[g] λ + 1 (g̃)V ol(M, g̃) 1/n where λ+1 (g̃) is the smallest positive eigenvalue of the Dirac operator D in the metric g̃. A previous result stated that λ+min(M, [g], σ) ≤ λ + min(S n) = n 2 ω 1/n n where ωn stands for the volume of the standard n-sphere. In this paper, we study t...

متن کامل

The Supremum of Conformally Covariant Eigenvalues in a Conformal Class

Let (M, g) be a compact Riemannian manifold of dimension ≥ 3. We show that there is a metrics g̃ conformal to g and of volume 1 such that the first positive eigenvalue the conformal Laplacian with respect to g̃ is arbitrarily large. A similar statement is proven for the first positive eigenvalue of the Dirac operator on a spin manifold of dimension ≥ 2.

متن کامل

Almost harmonic spinors

We show that any closed spin manifold not diffeomorphic to the two-sphere admits a sequence of volume-one-Riemannian metrics for which the smallest non-zero Dirac eigenvalue tends to zero. As an application, we compare the Dirac spectrum with the conformal volume. Spineurs presque harmoniques Résumé. Nous montrons que, sur toute variété spinorielle compacte sans bord non difféomorphe à la sphèr...

متن کامل

A Spinorial Analogue of Aubin’s Inequality

Let (M,g, σ) be a compact Riemannian spin manifold of dimension ≥ 7. We show that if (M,g) is not conformally flat, then there is a metric g̃ conformal to g such that the first positive eigenvalue λ̃ of the Dirac operator on (M, g̃, σ) satisfies λ̃ Vol(M, g̃) < (n/2) Vol(S). It follows from this inequality that the infimum of the first positive Dirac eigenvalue is attained in the conformal class of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003